
Implementing SCTP to support
WebRTC data channels in pure Rust
David Simmons
Boulder/Denver Rust Meetup
September 18, 2018

About me
• Freelance software engineer

• Worked for many years in the consumer
electronics industry

• C, C++, Linux device drivers, audio/video

• Long-time systems programmer interested in
network protocols

@simmons
simmons
https://davidsimmons.com/

Outline
• Goals
• The problem domain

• Peer-to-peer networking and WebRTC
• SCTP: Stream Control Transport Protocol

• Implementing SCTP in Rust
• Approach
• Design
• Implementation
• Testing
• The Future

• Demo time!

Goals
• Long-term: A set of crates that provides a complete

solution for using WebRTC outside of a web browser, thus
providing a peer-to-peer networking stack for devices and
apps.

• Short-term: Support WebRTC data channels with a Rust
implementation of the Stream Control Transport Protocol
(SCTP).

• The stack should be pure Rust, with the exception of
cryptography.

Outline
• Goals
• The problem domain

• Peer-to-peer networking and WebRTC
• SCTP: Stream Control Transport Protocol

• Implementing SCTP in Rust
• Approach
• Design
• Implementation
• Testing
• The Future

• Demo time!

Why peer-to-peer networking?
• Technical reasons

• Lower latency
• Reduce bandwidth costs

• Political reasons
• Theoretically possible to build overlay networks for privacy, anonymity and

“routing around censorship” (e.g. I2P)
• Self-hosting to reduce dependency on third parties

• Creative reasons
• Experimenting with novel decentralized systems (e.g. distributed hash

tables (DHTs), cryptocurrencies)
• Enable the development of network applications that have yet to be

imagined

Peer-to-peer applications

Conferencing Multiplayer games

File transfers Security cameras

NAT Traversal (1/3)

In an ideal world, we could connect to peers as simply as we
connect to servers.

NAT Traversal (2/3)

• Consumer broadband routers use Network Address Translation (NAT)
to provide private address spaces, translate addresses, and protect the
network with simple stateful firewalls.

• Direct communication between hosts is problematic when each is
behind a NAT.

NAT Traversal (3/3)

• The UDP hole punching technique works around NATs by each host
independently initiating communication, thus establishing the required
NAT mappings on both routers.

• Unfortunately, this means re-inventing the world on top of UDP.
• “TCP simultaneous open” is a thing, but is unreliable in practice.

IETF standardization of NAT Traversal
• Bespoke NAT traversal systems were invented and re-invented for

years (e.g. Skype, circa 2003).

• In recent years, the Internet Engineering Task Force (IETF) has
developed standards for NAT traversal.

• STUN (RFC 3489, 2003) - Discover one's public IP and NAT
situation.

• TURN (RFC 5766, 2010) - Relay traffic as a fallback.

• ICE (RFC 5245, 2010) - A system for negotiating address
candidates and NAT-traversed UDP flow.

• NAT traversal is a kludge, but at least now it’s a standardized kludge.

Enter WebRTC
• From my perspective as a systems

programmer, WebRTC bundles all
the best-known methods for peer-to-
peer networking, and provides a
common target for interoperability.

• Invented at Google in 2011,
standardized by the W3C and IETF
(RFC 7478 and others, 2015-)

• Like many things that start with the
word “Web”, WebRTC has ambitions
beyond web browsers.

• Browser concerns
• Media access
• API

• Protocol specifications
• Network concerns

Re-inventing TCP
• We need to re-invent everything we lost when we ditched

TCP in favor of UDP hole punching.

• Reliability (when desired)

• Ordered delivery (when desired)

• Congestion control

• One solution would be TCP-over-UDP.

• WebRTC instead picked SCTP as a “better TCP”.

Specification graph to support data channels
RFC 4960: Stream Control Transmission Protocol
RFC 3758: SCTP Partial Reliability Extension
RFC 7496: Additional Policies for the Partially Reliable SCTP Extension
RFC 6525: SCTP Stream Reconfiguration
RFC 5061: Dynamic Address Reconfiguration
RFC 4820: Padding Chunk and Parameter for SCTP
RFC 8260: Stream Schedulers and User Message Interleaving for SCTP
RFC 8445: Interactive Connectivity Establishment (ICE)
RFC 5389: Session Traversal Utilities for NAT (STUN)
RFC 5766: Traversal Using Relays around NAT (TURN)
RFC 4566: SDP: Session Description Protocol
RFC 3264: An Offer/Answer Model with SDP
draft-ietf-rtcweb-data-channel-13: WebRTC Data Channels
draft-ietf-rtcweb-data-protocol-09: WebRTC Data Channel
Establishment Protocol
draft-ietf-mmusic-ice-sip-sdp-21: Session Description Protocol (SDP)
Offer/Answer procedures for ICE
draft-ietf-rtcweb-jsep-24: JavaScript Session Establishment Protocol
draft-ietf-mmusic-sctp-sdp-26: SDP Offer/Answer Procedures For SCTP
over DTLS Transport
draft-ietf-rtcweb-transports-17: Transports for WebRTC
draft-ietf-ice-trickle-21: Trickle ICE: Incremental Provisioning of
Candidates for the ICE Protocol

845 pages!!!!1! 😨😧😦😱😫😩 Picture: Kotivalo / Creative Commons

https://commons.wikimedia.org/wiki/File:Copies_of_documents_at_European_Parliament_in_Strasbourg.jpg

WebRTC protocol stack

Communicating with a peer is as simple as this.

WebRTC protocol stack

Communicating with a peer is as simple as this.

Outline
• Goals
• The problem domain

• Peer-to-peer networking and WebRTC
• SCTP: Stream Control Transport Protocol

• Implementing SCTP in Rust
• Approach
• Design
• Implementation
• Testing
• The Future

• Demo time!

What is SCTP?
• A transport-layer protocol that in theory is layered on top of IP, same as

UDP or TCP.

• Invented in 2000 by the telecommunications industry.

• When you make a phone call on your LTE phone, it's using SCTP to
establish the call.

• More flexible than TCP: Configurable reliability, configurable ordered/
unordered delivery, multiplexed streams, etc.

• Due to protocol ossification and poor support in OS and routers, SCTP
has never been practical to use on the Internet as originally intended.

• WebRTC bypasses protocol ossification and OS support issues by
encapsulating SCTP in UDP. (Actually, SCTP-over-DTLS-over-ICE-over-
UDP.)

Why re-implement SCTP?
• Education

• Experience with transport protocols

• Experience with Rust networking (tokio, futures)

• Most everyone re-uses the same C-based SCTP
implementation from FreeBSD (libusrsctp), and it's good
to have options.

• A pure Rust implementation might (some day) prove more
reliable than the C implementation.

Why not QUIC?
• It’s possible that QUIC may indeed eventually replace SCTP for

WebRTC data needs.

• In its current form, QUIC may not provide the feature set needed for
WebRTC. It may not be suitable for non-reliable or partially reliable
data channels.

• There does appear to be work in progress on both the QUIC and
WebRTC fronts to remove any obstacles to making QUIC a first-
class citizen of the WebRTC world.

• Today, in 2018, you need SCTP for WebRTC. Current proposals for
using QUIC in a WebRTC context seem to provide it as a separate
bolt-on API, and not a direct replacement for the existing Data
Channel feature.

Outline
• Goals
• The problem domain

• Peer-to-peer networking and WebRTC
• SCTP: Stream Control Transport Protocol

• Implementing SCTP in Rust
• Approach
• Design
• Implementation
• Testing
• The Future

• Demo time!

Set realistic goals
• Limit implementation to only the feature set need by WebRTC.

• Don’t support multi-homing
• Do support the SCTP extensions required by WebRTC

• Stick to stable/published tools and crates
• In the early stages, prefer boring code over cleverness

• Use Box, .clone(), etc. for now and optimize later.
• Simple, straightforward use of traits and lifetimes.

• Road map:
1. Produce a minimal proof-of-concept to gain confidence
2. Produce a correct implementation
3. Optimize

Rusty tools
• Use nom to parse packets.

• Is this really the most efficient way?

• It would be nice to have a tool that would both parse
and synthesize based on a format description.

• Tokio

Rapidly evolving crates
• tokio-core ! tokio

• Still using the legacy/deprecated tokio-core API

• Tokio now defaults to a multi-threaded reactor, so futures must be thread-friendly
(Rc → Arc, etc.)

• futures 0.1 ! ?

• Using the latest published futures crate — version 0.1

• futures 0.2.x was briefly published, then yanked, to much drama.

• When stable and published, migrate to 0.2, 0.3, async/await.

• futures::sync::mpsc race condition in 0.1

• tokio-timer 0.1 ! 0.2

• 0.1 has 100ms clock granularity; 0.2 has 1ms granularity

Outline
• Goals
• The problem domain

• Peer-to-peer networking and WebRTC
• SCTP: Stream Control Transport Protocol

• Implementing SCTP in Rust
• Approach
• Design
• Implementation
• Testing
• The Future

• Demo time!

Stack design
• API

• Asynchronous interface via
Tokio

• Synchronous API provided on
top of the async API

• Configurable lower-layer protocol
(LLP)

• SCTP-over-UDP for testing
with libusrsctp utilities

• SCTP-over-DTLS-over-UDP
for WebRTC

Futures design
• Currently, a single task is used for the SCTP stack and its

association futures.

Outline
• Goals
• The problem domain

• Peer-to-peer networking and WebRTC
• SCTP: Stream Control Transport Protocol

• Implementing SCTP in Rust
• Approach
• Design
• Implementation
• Testing
• The Future

• Demo time!

Associations
• Composing an association out of smaller futures or

components is difficult due to the large and interconnected
state.

• It’s hard to break out cross-cutting concerns like retransmission
and congestion control because they touch so many other
parts of association state. (But this deserves more thinking!)

• Examples of association state:
• SCTP association state (Established,

CookieEcho, etc.)
• Network 4-tuple (src/dst addresses/ports)
• Stream counts
• Queues: send, sent, receive, reassembly
• Local and peer verification tags

• Sending TSN, receiving TSN high water
mark

• Current calculated peer receiver window
• Retransmission measurements
• Numerous timers (timeouts, rtx, ...)
• Many other things!

Message reassembly
• Multiplexing and optional ordering make reassembly a bit

more complex than in TCP.

Memory efficiency
• The total payload size of all receive buffers (regardless of where they are

enqueued) is tracked to enforce window size.

• Some buffers are reference counted for efficiency, but need to switch to the bytes
crate.

• Memory for incoming packets is simply allocated on the heap.

• It turns out that even Linux heap-allocates for incoming data:

— v4.12 net/core/skbuff.c line 231

https://github.com/torvalds/linux/blob/v4.12/net/core/skbuff.c#L231

Outline
• Goals
• The problem domain

• Peer-to-peer networking and WebRTC
• SCTP: Stream Control Transport Protocol

• Implementing SCTP in Rust
• Approach
• Design
• Implementation
• Testing
• The Future

• Demo time!

Unit tests
• There are lots of unit tests to cover the basics:

• Parsing and synthesizing parameters, chunks, error causes, and
packets.

• Serial number arithmetic

• Reassembly queues

• Buffer management

• When testing with random values, seeded RNGs are used for
reproducibility.

• More complex aspects such as the SCTP state machine cannot be
easily tested in unit tests.

Simulation testing (1/2)
• A simulation framework supports integration tests where multiple

stack instances communicate with each other.

• The downside to simulation tests is they only prove that the stack
can interoperate with itself, not that it correctly implements SCTP.

• Simulations work by providing each stack with a custom lower-
layer protocol that knows how to route packets in-memory:

Simulation testing (2/2)
• A pause/resume allows testing time-sensitive scenarios such as

simultaneous shutdown.

• The arrangement of futures in the simulation looks like this:

Outline
• Goals
• The problem domain

• Peer-to-peer networking and WebRTC
• SCTP: Stream Control Transport Protocol

• Implementing SCTP in Rust
• Approach
• Design
• Implementation
• Testing
• The Future

• Demo time!

Risks
• Congestion control

• If this isn’t correct, it can cause grief for other network users.

• Bugs in transport protocols can leave systems vulnerable to
denial-of-service attacks.

Performance concerns
• Using UDP means performing a system call (and incurring

the associated context switch costs) for every single
datagram received and sent.

• Meltdown mitigations are likely to amplify this cost.

• Linux provides recvmmsg() and sendmmsg() system calls
for operating on more than one datagram at a time.
Maybe Mio could leverage this on Linux and any other
operating systems that provide a similar API?

Debugging
• The complex nature of transport protocols allow for a

great many bugs that the Rust compiler can't save us
from, so testing and debugging will likely be a major effort
even after functional completion.

Demo time!

