Implementing SCTP to support
WebRTC data channels in pure Rust

David Simmons
Boulder/Denver Rust Meetup
September 18, 2018

About me

Freelance software engineer

Worked for many years in the consumer
electronics industry

C, C++, Linux device drivers, audio/video

Long-time systems programmer interested in
network protocols

W @simmons

O simmons

AN

we https://davidsimmons.com/

Outline

- Goals
+ The problem domain
- Peer-to-peer networking and WebRTC
- SCTP: Stream Control Transport Protocol
- Implementing SCTP in Rust
» Approach
-+ Design
- Implementation
- Testing
+ The Future
- Demo time!

Goals

-+ Long-term: A set of crates that provides a complete
solution for using WebRTC outside of a web browser, thus
providing a peer-to-peer networking stack for devices and

apps.
- Short-term: Support WebRTC data channels with a Rust

implementation of the Stream Control Transport Protocol
(SCTP).

- The stack should be pure Rust, with the exception of
cryptography.

Outline

- Goals
-+ The problem domain
- Peer-to-peer networking and WebRTC
- SCTP: Stream Control Transport Protocol
- Implementing SCTP in Rust
» Approach
-+ Design
- Implementation
- Testing
- The Future
- Demo time!

Why peer-to-peer networking?

- Technical reasons

- Lower latency

-+ Reduce bandwidth costs
+ Political reasons

+ Theoretically possible to build overlay networks for privacy, anonymity and
“routing around censorship” (e.g. I12P)

- Self-hosting to reduce dependency on third parties
- Creative reasons

- Experimenting with novel decentralized systems (e.g. distributed hash
tables (DHTSs), cryptocurrencies)

- Enable the development of network applications that have yet to be
imagined

Peer-to-peer applications

File transfers Security cameras

NAT Traversal (1/3)

D S EEE—

B - - TCP SYN el
et LTI L ELLELELERT LI LLLELLEL LTI src: 1.1.1.1:60000----------cccccccmccrccccncnccccnnn.- > B
1.1.1.1 dst: 2.2.2.2:80

TCP SYN/ACK
S R e L E Py SIc: 2.2.2.2:80 ----mmm e
dst: 1.1.1.1:60000

In an ideal world, we could connect to peers as simply as we
connect to servers.

NAT Traversal (2/3)

192.168.0.2 192.168.0.2
— 192.168.0.1 1.1.1.1 2.2.2.2 192.168.0.1 —
H [*I’*] % [*Il*] H
TCP SYN TCP SYN
------ src: 192.168.0.2:60000----->» ----src: 1.1.1.1:57226------»
dst: 2.2.2.2:80 dst: 2.2.2.2:80
TCP RST TCP RST
«----8rc: 222280 ------ «---src: 222280 -------
dst: 192.168.0.2:60000 dst: 1.1.1.1:57226

Consumer broadband routers use Network Address Translation (NAT)
to provide private address spaces, translate addresses, and protect the
network with simple stateful firewalls.

Direct communication between hosts is problematic when each is
behind a NAT.

NAT Traversal (3/3)

192.168.0.2 192.168.0.2
— 192.168.0.1 1.1.1.1 2.2.2.2 192.168.0.1 —
H [(+I:-] % [l I J H
UDP UDP UDP
------ src: 192.168.0.2:60000----» NAT ---_grc: 1.1.1.1:57226------» NAT ---src: 1.1.1.1:57226 --->
dst: 2.2.2.2:50080 dst: 2.2.2.2:50080 dst: 192.168.0.2:50080
UDP UDP UDP
<---SIC: 2.2.2.2:50080 ------ NAT <---src: 2.2.2.2:50080-------- NAT <-src: 192.168.0.2:50080-----
dst: 192.168.0.2:60000 dst: 1.1.1.1:57226 dst: 1.1.1.1:57226

* - lt's actually more complicated than this.

The UDP hole punching technique works around NATs by each host
iIndependently initiating communication, thus establishing the required
NAT mappings on both routers.

Unfortunately, this means re-inventing the world on top of UDP.

“TCP simultaneous open” is a thing, but is unreliable in practice.

|IETF standardization of NAT Traversal

- Bespoke NAT traversal systems were invented and re-invented for
years (e.g. Skype, circa 2003).

- In recent years, the Internet Engineering Task Force (IETF) has
developed standards for NAT traversal.

- STUN (RFC 3489, 2003) - Discover one's public IP and NAT
situation.

- TURN (RFC 5766, 2010) - Relay traffic as a fallback.

-+ |ICE (RFC 5245, 2010) - A system for negotiating address
candidates and NAT-traversed UDP flow.

-+ NAT traversal is a kludge, but at least now it’s a standardized kludge.

Enter WebRTC

ceéec

- From my perspective as a systems

programmer, WebRTC bundles all W3C
the best-known methods for peer-to- . Browser concerns
peer networking, and provides a © Media access

common target for interoperability. - AT

© o % =
E

- Invented at Google in 2011,
standardized by the W3C and IETF
(RFC 7478 and others, 201 5_) Protocol specifications

Network concerns

[T F

- Like many things that start with the

word “Web”, WebRTC has ambitions
beyond web browsers. Web QU RTC

Re-inventing TCP
- We need to re-invent everything we lost when we ditched
TCP in favor of UDP hole punching.

- Reliability (when desired)

- Ordered delivery (when desired)

- Congestion control

- One solution would be TCP-over-UDP.

- WebRTC instead picked SCTP as a “better TCP”.

Specification graph to support data channels

RFC 4960: Stream Control Transmission Protocol

RFC 3758: SCTP Partial Reliability Extension

RFC 7496: Additional Policies for the Partially Reliable SCTP Extension
RFC 6525: SCTP Stream Reconfiguration

RFC 5061: Dynamic Address Reconfiguration

RFC 4820: Padding Chunk and Parameter for SCTP

RFC 8260: Stream Schedulers and User Message Interleaving for SCTP
RFC 8445: Interactive Connectivity Establishment (ICE) : 2SN
RFC 5389: Session Traversal Utilities for NAT (STUN) e e N

AT

RFC 5766: Traversal Using Relays around NAT (TURN) "Vf e
RFC 4566: SDP: Session Description Protocol o S E
RFC 3264: An Offer/Answer Model with SDP

draft-ietf-rtcweb-data-channel-13: WebRTC Data Channels
draft-ietf-rtcweb-data-protocol-09: WebRTC Data Channel
Establishment Protocol

draft-ietf-mmusic-ice-sip-sdp-21: Session Description Protocol (SDP)
Offer/Answer procedures for ICE

draft-ietf-rtcweb-jsep-24: JavaScript Session Establishment Protocol
draft-ietf-mmusic-sctp-sdp-26: SDP Offer/Answer Procedures For SCTP
over DTLS Transport

draft-ietf-rtcweb-transports-17: Transports for WebRTC
draft-ietf-ice-trickle-21: Trickle ICE: Incremental Provisioning of
Candidates for the ICE Protocol

845 pages / / ,/ / 1 / @ | Picture: Kotivalo / Creative Commons

https://commons.wikimedia.org/wiki/File:Copies_of_documents_at_European_Parliament_in_Strasbourg.jpg

WebRTC protocol stack

Media streams Data channels

SCTP

Datagram TLS (DTLS)

ICE, STUN, TURN

Communicating with a peer is as simple as this.

WebRTC protocol stack

‘ SCTP ’
e -

ICE, STUN, TURN

Communicating with a peer is as simple as this.

Outline

- Goals
+ The problem domain
- Peer-to-peer networking and WebRTC
- SCTP: Stream Control Transport Protocol
- Implementing SCTP in Rust
» Approach
-+ Design
- Implementation
- Testing
- The Future
- Demo time!

What is SCTP?

- A transport-layer protocol that in theory is layered on top of IP, same as
UDP or TCP.

- Invented in 2000 by the telecommunications industry.

- When you make a phone call on your LTE phone, it's using SCTP to
establish the call.

- More flexible than TCP: Configurable reliability, configurable ordered/
unordered delivery, multiplexed streams, etc.

» Due to protocol ossification and poor support in OS and routers, SCTP
has never been practical to use on the Internet as originally intended.

- WebRTC bypasses protocol ossification and OS support issues by
encapsulating SCTP in UDP. (Actually, SCTP-over-DTLS-over-ICE-over-

UDP.)

Why re-implement SCTP?

- Education
- EXperience with transport protocols
- Experience with Rust networking (tokio, futures)

-+ Most everyone re-uses the same C-based SCTP
implementation from FreeBSD (libusrsctp), and it's good
to have options.

- A pure Rust implementation might (some day) prove more
reliable than the C implementation.

Why not QUIC?

- It’s possible that QUIC may indeed eventually replace SCTP for
WebRTC data needs.

- In its current form, QUIC may not provide the feature set needed for
WebRTC. It may not be suitable for non-reliable or partially reliable
data channels.

- There does appear to be work in progress on both the QUIC and
WebRTC fronts to remove any obstacles to making QUIC a first-
class citizen of the WebRTC world.

- Today, in 2018, you need SCTP for WebRTC. Current proposals for
using QUIC in a WebRTC context seem to provide it as a separate
bolt-on API, and not a direct replacement for the existing Data
Channel feature.

Outline

- Goals
+ The problem domain
- Peer-to-peer networking and WebRTC
- SCTP: Stream Control Transport Protocol
- Implementing SCTP in Rust
-+ Approach
-+ Design
- Implementation
- Testing
- The Future
- Demo time!

Set realistic goals

- Limit implementation to only the feature set need by WebRTC.
-+ Don’t support multi-homing
- Do support the SCTP extensions required by WebRTC
- Stick to stable/published tools and crates
- In the early stages, prefer boring code over cleverness
-+ Use Box, .clone(), etc. for now and optimize later.
- Simple, straightforward use of traits and lifetimes.
- Road map:
1. Produce a minimal proof-of-concept to gain confidence
2. Produce a correct implementation

3. Optimize

Rusty tools

- Use nom to parse packets.
- |Is this really the most efficient way?

- |t would be nice to have a tool that would both parse
and synthesize based on a format description.

- Tokio

Rapidly evolving crates

e tokio-core -» tokio

- Still using the legacy/deprecated tokio-core AP

- Tokio now defaults to a multi-threaded reactor, so futures must be thread-friendly
(Rc — Arc, etc.)

e futures 0.1 » ?
+Using the latest published futures crate — version 0.1
- futures 0.2.x was briefly published, then yanked, to much drama.
- When stable and published, migrate to 0.2, 0.3, async/await.
+ futures::sync: :mpsc race condition in 0.1

e tokio-timer 0.1 » 0.2

- 0.1 has 100ms clock granularity; 0.2 has 1ms granularity

Outline

- Goals
+ The problem domain
- Peer-to-peer networking and WebRTC
- SCTP: Stream Control Transport Protocol
- Implementing SCTP in Rust
» Approach
- Design
- Implementation
- Testing
+ The Future
- Demo time!

Stack design

- AP|

» Asynchronous interface via
Tokio

Other app-specific upper | WebRTC Data Channel

. Synchronous AP provided on layer protocols (upper-layer protocol)
top of the async AP S O
- Configurable lower-layer protocol
: UDP DTLS
- SCTP-over-UDP for testing (lower-layer protocol) (lower-layer protocol)

with libusrsctp utilities

- SCTP-over-DTLS-over-UDP
for WebRTC

Futures design

+ Currently, a single task is used for the SCTP stack and its
association futures.

Association #1

SCTP Stack

-
O
i
&
©
Q
et
9
S
-

Association #2

Outline

- Goals
+ The problem domain
- Peer-to-peer networking and WebRTC
- SCTP: Stream Control Transport Protocol
- Implementing SCTP in Rust
» Approach
-+ Design
- Implementation
- Testing
- The Future
- Demo time!

Associliations

Composing an association out of smaller futures or
components is difficult due to the large and interconnected
state.

It’s hard to break out cross-cutting concerns like retransmission
and congestion control because they touch so many other
parts of association state. (But this deserves more thinking!)

Examples of association state:

- SCTP association state (Established, - Sending TSN, receiving TSN high water
CookieEcho, etc.) mark

* Network 4-tuple (src/dst addresses/ports) » Current calculated peer receiver window

+ Stream counts - Retransmission measurements

-+ Queues: send, sent, receive, reassembly - Numerous timers (timeouts, rtx, ...)

- Local and peer verification tags - Many other things!

Message reassembly

- Multiplexing and optional ordering make reassembly a bit
more complex than in TCP.

Data
chunk
Store fragments until a complete message may
?
ordered” no—>» be yielded.
BTreeMap<TSN,C> = §
v ©
yes 2 ol
l BinaryHeap<InverseOrd<C>> LinkedList<C> —> S > %
D —
| Reodernon | | Medssembeone | | | g :
—> consecutive chunks —>{ " oooadC € ’ a
. . yielding it when -
with a min-heap et
Stream demux complete
S2

Memory efficiency

The total payload size of all receive buffers (regardless of where they are
enqueued) is tracked to enforce window size.

Some buffers are reference counted for efficiency, but need to switch to the bytes
crate.

Memory for incoming packets is simply allocated on the heap.
It turns out that even Linux heap-allocates for incoming data:

/* We do our best to align skb_shared_info on a separate cache
*x line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
* aligned memory blocks, unless SLUB/SLAB debug is enabled.
*x Both skb—>head and skb_shared_info are cache line aligned.
*/
size = SKB_DATA_ALIGN(size);
size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);

— v4.12 net/core/skbuff.c line 231

https://github.com/torvalds/linux/blob/v4.12/net/core/skbuff.c#L231

Outline

- Goals
+ The problem domain
- Peer-to-peer networking and WebRTC
- SCTP: Stream Control Transport Protocol
- Implementing SCTP in Rust
» Approach
-+ Design
- Implementation
- Testing
+ The Future
- Demo time!

Unit tests

- There are lots of unit tests to cover the basics:

- Parsing and synthesizing parameters, chunks, error causes, and
packets.

- Serial number arithmetic
- Reassembly queues

- Buffer management

- When testing with random values, seeded RNGs are used for
reproducibllity.

- More complex aspects such as the SCTP state machine cannot be
easlily tested in unit tests.

Simulation testing (1/2)

- A simulation framework supports integration tests where multiple
stack instances communicate with each other.

-+ The downside to simulation tests is they only prove that the stack
can interoperate with itself, not that it correctly implements SCTP.

- Simulations work by providing each stack with a custom lower-
layer protocol that knows how to route packets in-memory:

Integration tests
(upper-layer protocol)

SCTP Stack

SimulationLowerLayer

Simulation testing (2/2)

A pause/resume allows testing time-sensitive scenarios such as
simultaneous shutdown.

The arrangement of futures in the simulation looks like this:

.
- Router future

Association #1

Task

Task

SCTP

Stack —
Association #2 m
_ Stream #1

Association #1
SCTP Stream #...
i _Stream #1 _
Association #2 W

-
O
——
(&)
C
Q
e
9
S
ot

Outline

- Goals
+ The problem domain
- Peer-to-peer networking and WebRTC
- SCTP: Stream Control Transport Protocol
- Implementing SCTP in Rust
» Approach
-+ Design
- Implementation
- Testing
- The Future
- Demo time!

Risks

Congestion control
If this isn’t correct, it can cause grief for other network users.

Bugs In transport protocols can leave systems vulnerable to
denial-of-service attacks.

VIDEOS IPHONE WINDOWS10 CLOUD |INNOVATION SECURITY TECHPRO MORE

Linux kernel bug: TCP flaw lets remote
attackers stall devices with tiny DoS attack

SegmentSmack’ Linux bug gives a remote attacker the means to knock
out a system with minimal traffic.

Q By Liam Tung | August 7, 2018 -- 10:16 GMT (03:16 PDT) | Topic: Security

Performance concerns

+ Using UDP means performing a system call (and incurring
the associated context switch costs) for every single
datagram received and sent.

-+ Meltdown mitigations are likely to amplify this cost.

+ Linux provides recvmmsg() and sendmmsg() system calls
for operating on more than one datagram at a time.
Maybe Mio could leverage this on Linux and any other
operating systems that provide a similar API?

Debugging

- The complex nature of transport protocols allow for a
great many bugs that the Rust compiler can't save us
from, so testing and debugging will likely be a major effort
even after functional completion.

Demo time!

